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Modeling of Planar Circuits Including the
~ Effect of Space-Varying
Surface Impedances

Andreas Janhsen and Volkert Hansen

Abstract—The calculation of microstrip circuits including the
effect of lumped impedances can be done by describing the
lumped elements mathematically with the help of A-functions
[1]. This approach proceeds on the assumption of impedances
with infinite small extension in one dimension. This approach is
generalized for impedances of finite extend. Therefore space-
varying surface impedances are introduced that are incorporated
into the mixed space-spectral domain amalysis. The circuit is
embedded in layered media and is fed by an arbitrary number of
planar lines. Examples for microstrip lines with an absorbing
impedance region are given.

1. MopEL

E start with a multiport circuit that is embedded in a

layered medium (Fig. 1). The total surface current on
the metallic structure can be split into the current distribution
on the circuit (represented by the sum over N basis func-
tions) and the forward and backward travelling currents on
the X feedlines:

= Jc + Jlines
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with b, as the width of the nth current mode and b, as the
width of the kth line. The current on circuit J, is described
by N asymmetric piecewise sinusoidal basis functions
Ju(x, ¥). The number of basis functions depends on the
complexity of the circuit that has to be analyzed (e.g.,
N = 513 for the Wilkinson coupler [1] shown in Fig. 1). The

. K feedlines are represented by semi-infinite homogeneous

\ lines [2].
The electric field has to fulfill the surface impedance
boundary condition on the circuit:

(2)

tot(x y)'tan= tot(x y) tot(x’ y)-
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Fig. 1.. Stratified structure with planar circuit (example).

The space-varying surface impedance consists of two parts
z,
Z.+Z(x,y)

on the homogeneous lines,

Z (x,
X, ¥) = elsewhere.,

(3)

Thus, in addition to a finite conductivity Z, that represents
the conductor losses, we have a surface impedance Z(x, y)
on the circuit (Z, Z(x, y) complex values). By this space-
varying surface impedance different kinds of metallisation

~ can be modeled (e.g., a superconductive film) or/and we can

model impedances Z°F of finite size. In order to formulate an
integral equation we define the Green’s function G(7, 7') of
the stratified medium [3] with

1= L[t

Jm(x’, y,z)dv. (4)
The right side of (4) is written as a twofold Fourier transform
of its spectral components and inserted in (2). The integral
equation is solved by the method of moments (see [1] for
detailed information). Applying a modified method of
Galerkin we obtain the following set of linear equations:

Emt X, ), 2

N+K
Y I(Z; - ZP) = Z Vi
with j=1,,N+ K, (5)
Zi= 4 // Glkx: k) = 2.1)
Fk,, k) F*(k,, k
; l( X y) J( y) dkx dky, (6)
bib'
X, X,
Z"y—// f( yb)J;( 2 ey, (7)
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Fig. 2. Splitting of the bases function and the surface impedance into a left
and a right term (x-mode).

1 . o

Vie = —mA /kuj(c;(kx,ky) - z.1)
5 Fe (s, b)) (ks k)

, b,.b;

dk, dk,. (8)
(F(ky, k) is the Fourier transform of the nth basis func-

tion f,(x, y) and G(k,, k,) is the Fourier transform of the
Green’s function G(7, 7).)

II. SPACE-VARYING IMPEDANCES

The rectangular net used for the modeling of the current is
simultaneously used for the discretisation of the space-vary-
ing surface impedance Z(x, y). On each rectangular area

defined by this net the surface impedance is set to be con- .

stant. In order to involve this approach with the theory
applied so far, the basis function f,(x, y) (e.g., for a current
in x-direction) is split up into a Jleft and a right term (Fig.
'2), and we get

2(x, ) (x.2) = L 4(44(x.)

——-—f"(z’ 2) Z(x, y)d,

N fa(x, ) +Sa(x,9)
oy Rt

n n

< Z(x, y)u,.
The functions A%/" are defined as

+A45(x, »))

©)

1, forx,—wi<x<x,;

(%, ) = V= by/2<y<y,+b,/2, (102)
0, elsewhere,
and
1, for x, < X < X, + Wy;
An(x,y) = Yy = b, /2 <Yy <y, +b,/2, (10b)

0, elsewhere.
With this we have piece\;vise constantsu}face irnpedaﬂces
Z,(x,y) = Z,An(X, ¥) + Z; AL(x, ¥)
with ‘
Z%, Z! const.

(11)
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Fig: 3. ' Reflection of an impedance region (Z° = 50Q; surface impedance
Zy).

We obtain finally

L N fix, 0 Zh+ fi(x, )2,
Z(x, ) J(x,y) = > I,= “ > U,
n n
(12)
Because of the simple basis. functions, (7) can be evaluated
analytically now by

- =

u;u;

zZ = 2 Z,’/ /,f,.’(x, »)fi(x, y) dxdy
J b,bj x’y . A

+Zf/;c/f1'(x,y)J’{~(x,y) dedy|. (13)

The effective impedance of the region of the n’th basis
function is given by
4 r

w
Zf =z 24727, 14
n n bn n bn ( )
The description for currents in y-directions is done in an
analogous way. ~

1. EXAMPLES

In the first example the length / of a region with constant
surface impedance on a microstrip line (Z, = 0) is varied
(Fig. 3). For a constant impedance value Z f of the complete
region _

i
zeff =7 —
°b

* with

Z,, for-b/2<y<b/2; 0<x<lI,

0, else,
(15)

the value of the surface impedance Z, must decrease for
increasing length of the region (/ = 0 is the lumped element).

Z(x,y) = {
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Fig. 4. Amplitude of the current on a microstrip line with an impedance
region of finite extend (// b = 5; for data see Fig. 3).

Fig. 3 shows the reflection coefficient S, as a function of the
length /. As was to be expected, the reflection decreases with
increasing length of the impedance region (for //b = o we
would expect S,; = 0). The current distribution for //b = 5
is shown in Fig. 4.

Surface varying impedances can be used for matched
loads. Suitable results are obtained applying an exponential
_ increase of the surface impedance. As an example Fig. 5
shows the current distribution for a microstrip line terminated
with such a load.

IV. ConcLusioN

Space-varying impedances allow the calculation of planar
circuits with finite areas of different surface impedances. This
often gives a more realistic model than the assumption of
lumped elements which are defined by A functions. Further-
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Fig. 5. Amplitude of the current on a microstrip line terminated by an

absorber ( f = 10 GHz).

more the approach outlined here can advantageously be used
for planar circuits with areas of different conductivities as it
is, e.g., with the application of superconductivity.
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