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Modeling of Planar Circuits Including the

Effect of Space-Varying

Surface Impedances
Andreas Janhsen and”’ “ ‘ “

Abstract–The calculation of microstrip circuits including the

effect of lumped impedances can be done by describing the
lumped elements mathematically with the help of A-functions
[1]. This approach proceeds on the assumption of impedances

with infinite small extension in one dimension. This approach is

generalized for impedances of finite extend. Therefore space-
varying surface impedances are introduced that are incorporated

into the mixed space-spectral domain analysis. The circuit is
embedded in layered media and is fed by an arbitrary number of
planar lines. Examples for microstrip lines with an absorbing
impedance region are given.
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Fig. 1. Stratified stmcture with planar circuit (example).

The space-varying surface impedance consists of two parts

I. MODEL

{

z

w %,(x,Y)= c’ on the homogeneous lines,

E start with a multiport circuit that is embedded in a Zc + Z( x, y) elsewhere.
layered medium (Fig. 1). The total surface current on

the metallic structure can be split into the current distribution

on the circuit (represented by the sum over N basis func-

tions) and the forward and backward traveling currents on

the K feedlines:
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(1)

with b. as the width of the nth current mode+tnd bk as the

width of the kth line. The current on circuit J= is described

by N asymmetric piecewise sinusoidal basis functions

~.( x, y). The number of basis functions depends on the

complexity of the circuit that has to be analyzed (e.g.,

N = 513 for the Wilkinson coupler [1] shown in Fig. 1). The

K feedlines are represented by semi-infinite homogeneous

, lines [2].

The electric field has to fulfill

boundary condition on the circuit:

%x(x> Y)I tan = ‘tot(x,

the surface impedance

Y) lot(x> Y). (2)
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(3)

Thus, in addition to a finite conductivity Zc that represents

the conductor losses, we have a surface impedance Z( x, y)

on the circuit ( ZC, Z( x, y) complex values). By this space-

varying surface impedance different kinds of metallisation

can be modeled (e.g., a superconductive film) or/and we can

model impedances Z’ff of finite size. In order to formulate an

integral equation we define the Green’s function @;, ;’) of

the stratified medium [3] with

&t(x, Y, z) = ~,~,~;(x9Yyz9x’, Y’,z’)

“ &(X’, y’, Z’) du’. (4)

The right side of (4) is written as a twofold Fourier transform

of its spectral components and inserted in (2). The integral

equation is solved by the method of moments (see [1] for

detailed information). Applying a modified method of

Galerkin we obtain the following set of linear equations:

N-I-K

E ~i(zjj - ‘j’) = $ ~t~k>
z

with j=l, ”””, N+K, (5)

~:2~pwjky) -Z=qZji = —
XJ

Fi(kX, kY)~j*(kx> ky) dk dk
“ iii

bibj
x ~, (6)

1/ .fi(x,Y).fj(x, Y)
Zjy = ijfiiZ(X, y)

bibj
dxdy, (7)
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Fig. 2. Splitting of the bases function id the surface impedance into a left
and a right term ( x-mode).

4~2~~zj(d(k.,~y)‘Zcf)qk=– —

Xy

Fp(kx, ky)q*(~x)~y)~k &

“ iik
bkbj

x y“ (8)

(F.(kX, Icy) is the ~ourier transform of the nth basis ii.mc-
tion ~n(x, y) and G(kX, Icy) is the Fourier transform of the

Green’s function &~, ~’),)

II. SPACE-VARYING IMPEDANCES

The rectangular net used for the modeling of the current is

simultaneously used for the discretisation of the space-vay

ing surface impedance 2(x, y), On each rectangular area

defined by this net the surface impedance is set to be con-

stant. In order to involve this approach with the theory

applied so far, the basis function ~~( x, y) (e.g., for a current

in x-direction) is split up into a left and a right term (Fig.

2), and we get

Z(X>Y)7C(X,Y) = SOIL(%Y)
n

fn(x, y)
+~;(x> Y)) b qx, Y)%

n

= slnf~(x’‘) ;f~(x’ ‘)
n n

“ 2(X, y)iin.

The functions A~j’ are defined as

(9)

[

1, for x. - W;<x<xn;

A;(x> y) = Y. – %/2 <Y <Yn +bn/2, (lea)

o, elsewhere,

and

{

1, forx. <x<xn-t-w~;

A;(x, y) = yn - bn/2 <Y<yn +bn/2, (lob)

o, elsewhere.
—

With this we have piecewise constant su~ace impedances

Zn(x, y) = Z~A~(x, Y) + Z; A;(X, Y)

with

Z;, Z; const. (11)
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Fig. 3. Reflection of an impedance region (Zeff = 50t2; surface impedance
Zo).

We obtain finally

N fi(x> Y)z +fxx, Y) Z;;
Z(X, y)~c(x,Y) = Zln

bn
n“

n

(12)

Because of the simple basis functions, (7) can be evaluated

analytically now by

;jzi ( //bibj “
Z$y . —

z fl(x, Y) fj(x, Y)dxdY

‘Z[J J;l;xy)fj(xy)dxdy)o (13)

XY

The effective impedance of the region of the n ‘th basis

fimction is given by

(14)

The description for’ currents in y-directions is done in an

analogous way.

III. EXAMPLES

In the first example the length 1 of a region with constant

surface impedance on a microstrip line (ZC = O) is varied

(Fig. 3). For a constant impedance value Z“ff of the complete

region

Zeff= 2.:

with

{

z
Z(x, y) = Oo’

for–b/2<y <b/2; O<x<l,

9 else,
(15)

the value of the surface impedance 20 must decrease for

increasing length of the region (1 = O is the lumped element).
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Fig. 4. Amplitude of the current on a microstrip line with an impedance
region of finite extend ( 1/ b = 5; for data see Fig. 3).

Fig. 3 shows the reflection coefficient Sll as a function of the

length 1. As was to be expected, the reflection decreases with

increasing length of the impedance region (for 1/b = m we

would expect Sll = O). The current distribution for 1/b = 5

is shown in Fig. 4.

Surface varying impedances can be used for matched

loads. Suitable results are obtained applying an exponential

increase of the surface impedance. As an example Fig, 5

shows the current distribution for a microstrip line terminated

with such a load.

lV. CONCLUSION

Space-varying impedances allow the calculation of planar

circuits with finite areas of different surface impedances. This

often gives a more realistic model than the assumption of

lumped elements which are defined by A functions. Further-
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5. Amptitude of the current on a microstrip line terminated
absorber (~= 10 GHz).

by an

more the approach outlined here can advantageously be used

for planar circuits with areas of different conductivities as it

is, e.g., with the application of superconductivity.
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